Synchronization-induced persistence versus selection for habitats in spatially coupled ecosystems.
نویسندگان
چکیده
Critical population phase transitions, in which a persistent population becomes extinction-prone owing to environmental changes, are fundamentally important in ecology, and their determination is a key factor in successful ecosystem management. To persist, a species requires a suitable environment in a sufficiently large spatial region. However, even if this condition is met, the species does not necessarily persist, owing to stochastic fluctuations. Here, we develop a model that allows simultaneous investigation of extinction due to either stochastic or deterministic reasons. We find that even classic birth-death processes in spatially extended ecosystems exhibit phase transitions between extinction-prone and persistent populations. Sometimes these are first-order transitions, which means that environmental changes may result in irreversible population collapse. Moreover, we find that higher migration rates not only lead to higher robustness to stochastic fluctuations, but also result in lower sustainability in heterogeneous environments by preventing efficient selection for suitable habitats. This demonstrates that intermediate migration rates are optimal for survival. At low migration rates, the dynamics are reduced to metapopulation dynamics, whereas at high migration rates, the dynamics are reduced to a multi-type branching process. We focus on species persistence, but our results suggest a unique method for finding phase transitions in spatially extended stochastic systems in general.
منابع مشابه
Environmental coupling in ecosystems: From oscillation quenching to rhythmogenesis.
How landscape fragmentation affects ecosystems diversity and stability is an important and complex question in ecology with no simple answer, as spatially separated habitats where species live are highly dynamic rather than just static. Taking into account the species dispersal among nearby connected habitats (or patches) through a common dynamic environment, we model the consumer-resource inte...
متن کاملTemporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting ...
متن کاملGENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS
In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.
متن کاملWildfire and Management of Forests and Native Fishes: Conflict or Opportunity for Convergent Solutions?
Wildfire is a critical land management issue in the western United States. Efforts to mitigate the effects of altered fire regimes have led to debate over ecological restoration versus species conservation framed at the conjuncture of terrestrial and aquatic ecosystems and their respective management regimes. Fire-related management activities may disrupt watershed processes and degrade habitat...
متن کاملRelationships between Species Diversity and Biomass in Mountainous Habitats in Zagros Rangeland (Case Study: Baneh, Kurdistan, Iran)
Species diversity, richness and biomasses (aboveground biomass) and their relationships are the key variables of ecosystems. This study was conducted to determine the relationship of Species Diversity (SD) and Species Richness (SR) with Above-Ground Biomass (AGB) at a local scale at 5 different habitats (shrubland, forbland, grassland, shrub-forbland and forb-shrubland) in Zagros mountains in w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 10 87 شماره
صفحات -
تاریخ انتشار 2013